
Design and Implementation of a
High-Speed ATM Host Interface Controller

 Chan Kim, Jong-Arm Jun, Yeong-Ho Park, Kyu-Ho Lee, Hyup-Jong Kim
Electronics and Telecommuncations Research Insititute, Korea

Abstract
The performance increase in computers and ATM

networks together with emerging high bandwidth services
has resulted in bottleneck at the host-network interfaces.
This paper describes the design and implementation of
an ATM host interface controller ASIC which relieves the
host CPU from processing burdens by doing most of the
SAR processing by hardware and also provides high
performance. This NIC uses local memory to store
control data as well as the received cells and it internally
has STM1 framer with clock recovery function. The
ASIC is a single-chip solution for the implementation of
high performance low-cost ATM network adapters for
computers having PCI bus.

Introduction

As ATM network penetrates into the traditional local
and even residential area network, the cheap, compact
implementation of high performance ATM host-network
adapter becomes more demanded because we are seeing
the increasing performance in both the computers and
also in networks along with the emergence of high
bandwidth multimedia services. This paper describes
the design and implementation of a single chip ATM
network interface controller called ASAH-NIC which can
be used to implement this low-cost but high performance
ATM adapters.

The ATM Subscriber Access Handler - Network
Interface Controller (ASAH-NIC) provides the
segmentation and reassembly functions for AAL5 and
non-AAL5 traffic with internal 155Mbps physical layer
functions with clock recovery. The number of
connections which can be serviced at the same time is
only limited by the size of the local memory to be used
attached to the chip. Specifically, ASAH-NIC uses
local memory to store control data for segmentation and
reassembly of practically non-liminted number of
connections and to store received cells before they are
reassembled into packets. The segmented cells are
stored in internal 10 cell FIFO before sent to the physical
layer. This ASIC also has add-drop function for single-
ring configuration which will be used in a residential
ATM network.

Architectural Overview

Fig. 1 shows the functional block diagram of ASAH-
NIC. It is composed of PCI core, DMA master, DMA
slave, segmentation engine, reassembly engine, add-drop
control and utopia interface, local memory arbiter and
interface and SDH framer. The PCI core provides the
capability of direct interface to PCI bus with no glue
logic. Since most of the functions are done by
segmentation and reassembly engine with DMA read and
write capability, the host CPU is much relieved from the
chores of protocol processing and data movement than in
traditional adapter design.

SEGMENTATION

REASSEMBLY

DMA_M

DMA_S

ADD-DROP
CONTROL
&
UTOPIA

LOCAL MEMORY
ARBITER & INTERFACE

PCI

CORE
SDH
FRAMER

EXT. UTOPIA INTERFACE

LOCAL MEMORY BUS

PCI
LOCAL
BUS

TRANS-
CEIVER

Figure 1. ASAH-NIC functional block diagram

The segmentation and re-assembly block performs all
functions related to AAL0, AAL3/4, and AAL5
processing. ASAH-NIC provides complete SAR functions
for AAL 5. ASAH-NIC allows pre-formatted OAM cells
to be inserted or extracted on an active connection.

PCI Core

The PCI core is a commercially available one from
Virtual Chips Inc. It conforms fully to the PCI
specification and has four separate FIFOs for master read,
write and slave read, write and provides easy to
understand interfaces for the back-end logic.

DMA Master

The DMA master block is divided into arbiter, DMA
read block for segmentation, DMA write block for
reassembly. The arbiter arbitrates between DMA
segmentation and DMA reassembly. The DMA
segmentation block performs DMA read according to the
DMA request from the segmentation engine. The

Authorized licensed use limited to: ETRI. Downloaded on May 04,2022 at 07:42:49 UTC from IEEE Xplore. Restrictions apply.

segmentation engine requests DMA to the DMA master
block providing such information as the start byte
location of the DMA read, the number of bytes, and other
information needed to form ATM cell like cell header,
trailer, partial CRC32, etc. The DMA segmentation
block returns the segmented ATM cell to the
segmentation engine which is then stored in the
segmentation cell FIFO. Because the DMA address and
size given from the segmentation engine is in byte unit,
the DMA segmenation block converts these byte
information to corresponding word information and
extracts from the word stream delivered from the PCI bus
only the needed bytes to make a new aligned 32 bit word
stream. This is a powerful function which makes it
completely unnecessary for the host CPU to move or
align data after higher layer protocol processing. The
read data from the PCI buffer is temporarily stored in the
FIFO which is internal to the DMA segmentation block
and ATM cells are formed using the data read from the
FIFO and other data like ATM cell header, trailer, etc.
The DMA reassembly block performs DMA write
according to the DMA write request from the reassembly
engine. The reassembly engine requests DMA write of
the cell payload to the DMA master block providing such
information as the host memory address to write the data
at, the local memory address to read the cell data from.,
the partial CRC32 for the CRC calculation, and so on.
The DMA reassembly block moves the ATM cell from
the local memory to the PCI memory to form the CPCS-
PDU packet in the host memory. For AAL5, partial
CRC32 value is returned to the segmentation or
reassembly engines for later use.

DMA Slave

The DMA slave block responds to the PCI slave access
request coming from the PCI core with the PCI command
and start address. If the request is a memory read, DMA
block requests predefined number of words to device
register block or memory arbiter block according to the
called addressed range. As the data is delivered from
device register block or memory block, the data is
directly passed and written into PCI slave read buffer
until stop_write signal is asserted. The data coming
after stop_write is not written to the PCI buffer. The
number of prefetch words are programmable. If the
request is memory write, the DMA slave block reads the
PCI core’s slave write buffer and write the data to
internal FIFO monitoring PCI buffer’s empty flag until
last_out signal is asserted or the DMA slave’s internal
FIFO is full. After moving the data from the PCI slave
write buffer to the internal FIFO, it requests to write the
stored number of words to the device register block or

memory block according to the called address range. If
reading the PCI slave write buffer was ended due to the
internal FIFO’s going full, the slave write controller
returns to reading PCI slave write buffer for the
remaining words.

Local Memory Arbiter / Interface

Local memory arbiter and interface block’s function is
two fold. First, it arbitrates the access request for local
memory among five processing blocks. The arbitration
is done for read and write each and at the most front end,
the read and write is arbitrated. For arbitration, the
utopia receive block’s request for hashing and writing
received cells is given the top priority. Though arbiter
jumps to the utopia receive block service(if pending) after
finishing a low priority request, when returning from the
higher priority service, the cyclic priority assignment
among the lower priority pending requests before the
jump is remembered and resumes in unaltered manner.
The second important function of the memory
arbiter/interface block is the provision of programmable
timing interface for various local memory speeds. For
this speed matching, it has internally two FIFOs for write
and read operation and access times are extended
according to the programmable memory speed. To
increase the throughput of the memory access, the read
and write controller adopts some degree of pipelining
concept. That is, for the writing, the write to the local
memory is started right after the first word is written in
the FIFO because the local memory is at least not faster
than internal clock operation And for the reading, after
the data delivery is started for a request, the next requst
is checked and passed to the front read controller.

Segmentation Engine

The segmentation block is composed of main
segmentation manager, buffer link manager, free buffer
descriptor manager, UBR pointer manager, and status
report manager. When the host has data to send, it forms
the buffer descriptor and sends it to the segmentation
engine through the buffer descriptor queue. The buffer
link manager reads buffer descriptors from the BDQ and
copies it in a free location of the buffer descriptor table
and links it to corresponding VC table using pointer
fields in the VC table. Independently of this linking
actions, the main segmentation manager scans the
schedule table which has as the entry the pointers to VC
table to be serviced. Fig. 2 shows some of this
relationship.

When a VC table is serviced, the main segmentation
manager loads the VC table and if exists, loads the first

Authorized licensed use limited to: ETRI. Downloaded on May 04,2022 at 07:42:49 UTC from IEEE Xplore. Restrictions apply.

buffer descriptor linked to that VC table. It then
calculates the host memory address and number of bytes
to read to make cell from the current buffer. The number
of bytes read from the buffer is kept in the VC table so
that next time the segmentation can start from the last
read position of the buffer.

Rate Table Segmentation
 VC Table

Buffer Descriptor
Table

Local Control Memory Host Memory

x N
NEXT_PNTR

BUFF_ADDR

NEXT_PNTR

BUFF_ADDR

NULL

Packet Buffer

Packet Buffer

Packet Buffer

Packet Buffer

CURR_DESCR

LAST_DESCR

x N

NEXT_PNTR

BUFF_ADDR

Figure 2. Segmentation Operation Flow

Burst cells can be generated with one such loading as
directed in the VC table. The VC table is updated at
every completion of a DMA transaction and after
servicing a connection, the main segmentation manager
writes the VC table back to the local memory and begins
scanning the schedule table. Meanwhile, when a buffer’s
data is completely segmented out, the buffer descriptor is
returned to the free buffer descriptor list. When there is
not enough data to transmit for CVBR, UBR connection
is serviced. Fig. 3 shows the simplified state diagram of
the main segmentation engine.

TST
read

unassgn
cell ins.

RT
decode

VCT
read

BD
read

CURR
decode

data size
check

DMA request
& wait

free BD

re-DMA
check

VC table
write

UBRP
fetch

unassgn
cell ins

guard

imm. tx

CURR /= 0 and
(/UBR or time elapsed) not UBR and

CURR = 0

buffer_run_out
buff_replqce<= ‘1’

not buffer_run_out

UBR & time left

not size_ok
and dma_experienced
dma_experienced <= ‘0’;

not size_ok
and not dma_experienced

not UBRUBR
UBR <= ‘0’

dma_complete

UBR <= ‘1’

buff_replace
buff_replace <= ‘0’

Burst_cnt = 0 or UBR
if not UBR and Burst_cnt /= 0 and
CURR= 0 then UBR_LEFT <= ‘1’

not UBR and
Burst_cnt /= 0 and
CURR /= 0
dma_exp <= ‘1’

not buff_replace

UBR_LEFT = ‘1’
UBR_LEFT <= ‘0’

UBR_LEFT = ‘0’

Jump, Skip

finished

finished

Figure 3. Simplified State diagram of the main
segmentation manager

This segmentation engine can handle some special
cases of the data to be mapped into a cell’s payload being
located in separate buffer sent from the host. In this
case, though the remaining bytes are not enough for the
cell generation, if the following buffer is already linked
to the VC table, it assumes the data will be enough with
that of the following buffer and requests first DMA read
for the data in the current buffer and then second DMA
read for the remaining data in the following buffer. Fig.
4 shows this split DMA case for various buffer sizes of
the following buffer.

Cell Header

CPCS-PDU Payload

Padding bytes

Trailer, CRC32
(4+4)

40

48

40

48

40

Buffer Buffer

Buffer Buffer

Buffer Buffer

40

48

a)

b)

c)

Figure 4. Segmentation Examples - Split DMA

The free buffer descriptor manager manages the
unused descriptors of the buffer descriptor table in linked
list form and gives the free descriptor in the head to the
buffer link manager when requested for new free one and
appends the used descriptor to the tail of the free list
when it is returned by the main segmentation manager.

The VC table corresponding to the UBR is linked to
circular list and serviced one by one (only those who has
buffer linked to them) when selected CVBR connection
does not have enough data to send. When selected UBR
data is not enough at the time either, null cell is inserted.
The UBR pointer manager searches this UBR ring to find
the VC table which has buffer and at stand-by mode
returns the address when requested by the main
segmentation manager.

The status manager writes status information when
requested by the main segmentation manager at the point
of DMA completion by latching the status information
and writing that to the status queue in the local memory
and generating interrupt.

Reassembly Engine

The cell buffer is a block of local memory space which
is divided into cell space and operated cyclically like

Authorized licensed use limited to: ETRI. Downloaded on May 04,2022 at 07:42:49 UTC from IEEE Xplore. Restrictions apply.

FIFO memory. The received cell is first stored in cell
buffer and taken out for reassembly one by one. The
reassembly engine is divided into hash table manager,
main reassembly manager, free buffer descriptor
manager, and status queue manager. The hash table
manager reads two words from the cell buffer(hash index
and cell header) and searches the hash bucket chain for
the VC table matching the header. When matching VC
table is found it gives this address of the VC table to the
main reassembly manager for further processing. The
main reassembly manager reads the VC table and after
interpreting it, requests DMA write to the DMA master
block supplying the host memory address to write the cell
payload data at and the local cell buffer address to read
the cell from. After the DMA write is completed the VC
table is updated. The number of bytes written to the
buffer is kept in the VC table to start from the last write
position next time. When the host buffer to be used is
going to be full by current cell, the main reassembly
manager prefetches the next free buffer address from the
free buffer descriptor manager and divides the DMA
request into two DMAs of which the first one is made
with link request and link address (new free buffer
address) which is to be used to link the received buffers
into chain of a packet in the host memory. Likewise, the
main reassembly manager fetches a new free buffer
address when a new buffer is needed. After finishing the
reassembly for a CPCS-PDU packet, the main reassembly
manager requests status report to the status report
manager. The status report manager latches the status
information and writes them into the status queue and
generates interrupt. A free buffer descriptor manager
manages the unused host buffer descriptors in linked list
form like that of segmentation block. The free descriptor
is dispensed to the main reassembly manager when a new
buffer is needed and it is returned when the host has
consumed the received data buffer. (see Fig. 5)

Local Control Memory Host Memory

Free Buffer
Queue

Hash Table in
Local Memory

Entry 0 Pointer

+

HASH

RSM_HBASE
Register

Base Pointer

VPI/VCI

Entry M Pointer

Entry N-1 Pointer

Reassembly VCC
Table in local Memory

NEXT Pointer

NEXT Pointer

NEXT Pointer

Null

Packet Buffer
 (Empty)

Packet Buffer

Packet Buffer
 (Empty)

Packet Buffer
 (Empty)

Packet Buffer
 (Empty)

Figure 5. Reassembly Operation Flow

Add-Drop and UTOPIA Interface Block

When a cell is arrived from physical layer through
UTOPIA interface, the add-drop controller first generates
hash index using the cell header and reads that address
of local memory to get add-drop information and start
address of the hash bucket chain for the header. If the
returned value show that the cell should be received(or
dropped), the cell is written to the local cell buffer with
one word of hash chain address pre-pended to the cell. If
the read value shows that the cell is to be bypassed, than
the cell is written into the bypass FIFO for transmission.

The master node on single ring manages the
bandwidth allocation per node on the ring and informs
the assigned bandwidth values to each slave node systems.
The ring access controller of each node generates token
for transmit according to the assigned bandwidth. A
transmit cell can be transferred on single ring when there
is a token.

Conclusion

We have described the architecture of a high-sped
ATM network interface controller. It was designed to
reduce the performance degradation problem at the host -
network interface, and provide an efficient shared
medium access method for residential ATM network
with single ring topology. The segmentation and
reassembly operation mechanisms are addressed. And the
single ring access mechanism and SDH framer
architecture are also considered. It is ideally suited for
ATM host adapters, ATM hubs, bridges with PCI bus.
Functional level design has been verified using the
front-end VHDL simulation tool(Visual HDL and
Synopsys) and the gate-level timing simulation and test
design was done using C-MDE of LSI Logic
Corporation. The chip is now at its final check stage for
sign-off at this moment of writing.

Acknowledgments

We would like to thank Dr. Jae-geun Kim, Dr. Mun-
kee Choi, Sun Kang, Yeong-won Hwang, Young-wook
Cha, Ik-kyun Kim for their valuable advices and
encouragement

References

[1] Traw, C.B.S., and Smith, J.M., “ Hardware/Software
Organization of a High Performance ATM Host
Interface,” IEE JSAC Vol.11, No.2, Feb.1993.

[2] ITU-T Rec. I.432. I.361, I.363, I.371
[3] PCI Local Bus Specification, Rev 2.1. June. 1995

Authorized licensed use limited to: ETRI. Downloaded on May 04,2022 at 07:42:49 UTC from IEEE Xplore. Restrictions apply.

