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Abstract - A cyclic water-filling EPON(Ethernet Passive Optical 

Network) DBA(Dynamic Bandwidth Allocation) algorithm and 

its implementation in an ASIC are described with future 

improvements. Every cycle, short static gates are generated to 

collect reports and dynamic gates are generated according to the 

reports collected in previous cycle. In each cycle, unit length is 

additively allocated to the ONUs in a cyclic fashion until all the 

requests are satisfied or no resource is left. Four parallel engines 

are used to process the requests. As improvements, priority will 

be considered, and the processing burden will be evenly 

distributed to the 4 parallel engines in any case. 
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I. EPON AND DBA 

FTTH(Fiber To The Home) is becoming a practical 

solution for access network and has already been deployed in 

some countries. Among the FTTH technologies, EPON 

(Ethernet Passive Optical Network) standardized by the 

IEEE802 [1] is the most promising scheme due to its internet 

friendliness and low cost nature. 

EPON comprises an OLT (Optical Line Termination) in 

the central office and many ONU (Optical Network Unit)s in 

the residential area. A single fiber connects the OLT to the 

residential area and passive splitter is used to connect many 

ONUs in that area to the fiber. The unit of data transport is 

the Ethernet frame and a tag called LLID(Logical Link ID) is 

used in the preamble to make the PON topology appear as 

many point-to-point links. The LLID is assigned to each 

ONU during the discovery procedure. In downstream, the 

LLID indicates the destination ONU, and in the upstream, in 

indicates the source ONU. Using LLIDs, bridges in the OLT 

or ONU can perform the bridge operation of source MAC 

learning, destination MAC look-up and forwarding, 

etc(Fig.1) as in other topologies. 
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Fig. 1. Usage of LLID in EPON 

Downstream optical signal is broadcast to all ONUs and 

upstream optical signal sent by an ONU goes only to the 

OLT. To avoid contention in the upstream direction, the OLT 

should arbitrate the upstream transmission of the ONUs 

allocating upstream bandwidth resource to them. This 

operation is called DBA (Dynamic Bandwidth Allocation). 

The upstream bandwidth request is delivered using report 

frames containing the needed grant length and gate frames 

are delivered to the ONUs which contains the grant 



information in the form of (start time, length) pair. 

To arbitrate upstream transmission, timer is used in OLT 

and ONUs. ONUs’ timer is synchronized to that of OLT and 

OLT measures the RTT (Round Trip Time) of each ONU by 

subtracting from the OLT timer the timestamp delivered from 

the ONU. Before gate transmission, the OLT subtracts 

corresponding RTT value from the start time to compensate 

for the distance difference. 

We have developed EPON master [2][3], slave chips. The 

master ASIC integrates two EPON ports and each port 

connects up to 64 ONUs. The DBA employs a simple cycle-

based water-filling algorithm providing stable and high 

enough performance with necessary bandwidth provisioning 

capability. Fig. 2 shows the picture of the master ASIC which 

is being used in a commercial service in the city of Gwang-

Joo for about 1500 subscribers as of Dec. 2006. 

 

Fig. 2 Picture of the EPMC chip 

We are revising the chip with some improvements in the 

algorithm and implementation architecture. This paper is on 

the improved version of the CWF (Cyclic Water-Filling 

DBA) algorithm. The organization of the paper is as follows. 

Our DBA algorithm is explained in section 2 and the 

implementation is described in section 3. The improvements 

are explained together with indications. Section 4 gives a 

brief result of the performance and section 5 concludes. 

II. RELATED WORKS AND WATER-FILLING DBA 

ALGORITHM 

In paper [4], a natural DBA algorithm is suggested where 

bandwidth is allocated in the order of fixed allocation, high 

priority and low priority requests in strict priority algorithm. 

When congested, the available length is allocated with 

weights proportional to the requests. [5] tried to solve the 

starvation problem of this previous work and shows better 

performance with respect to fairness. But these works, like 

most others in the literatures, need floating point operation 

which is difficult to implement without CPU or DSP and 

does not consider the timing between reports and gates 

(grants). 

This paper is based on our previous work [2] and addresses 

its functional and performance upgrades to be made in the 

future. As before, the proposed and implemented water-

filling DBA scheme does not need any floating point 

computation yet providing faster allocation time and control 

over priority in the requests. 

Our DBA scheme is cycle based where short static gates 

are generated for each registered ONUs to make sure reports 

are collected every cycle and the remaining time is 

dynamically allocated to the ONUs according to the reports 

received from previous cycle. Fig. 3 shows the timing 

relation between downstream gates and upstream bursts. 

Reports are delivered at the end of every burst. Bandwidth is 

controlled by controlling the gate length per cycle. 
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Fig. 3 report and gate timing in cycle 

Allocating the remaining time to the ONUs is like water-

filling in that unit length is subtracted from the available gate 



resource time and added to each ONU in a cyclic fashion 

until the requests are all satisfied or the resource runs out.  

This algorithm also makes it possible to put a limit in the 

dynamic gate length and to provide minimum guaranteed 

dynamic gate length for each ONU while considering priority 

information in the requests. 

The original 8 priority queue reports are mapped to high 

and low priority, and then max-limited and converted to 

guaranteed (G), high (H) and low (L) values. Then, three 

DBA processing target variables of guaranteed (G), up-to-

high (BH=G+H) and up-to-low (BL=G+H+L) are derived. 

Water-filling is done for these 3 phage variables. At each 

phase, unit lengths are cyclically allocated until the 

corresponding phase’s request variables are satisfied for all 

the ONUs or the remaining gate runs out. Fig. 4 shows how 

the 3 target variables are calculated for actual water-filling 

processing phases. 
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Fig. 4 pre-processing before water-filling 

Fig. 5 shows the example of the allocation result using the 

proposed and implemented dynamic gate allocation algorithm 

for 2 different cycles. In the figure, each bar represents 

ONUs’ requests. The lowest part of each bar is the minimum 

guaranteed gate length and the filled area is the allocated gate 

length. In cycles like case a), some ONUs’ requests were not 

satisfied because no grant time is left at the final allocation 

stage. In cycles like case b), all the requests were satisfied 

and resource is left after DBA processing. 
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Fig. 5. Water-filling DBA algorithm 

The water-filling algorithm can be represented as below 

where AV is total available gate length at given time. 
(fixed allocation subtraction) 

AV = AV - ∑
=

N

i 1
FixedGateLengthi; 

(CPU reserved length subtraction) 

AV = AV - ∑
=

M

i 1
CpuGateLengthi (if any); 

(adjustments for maximum limiting) 
If (HighPriorReqi >= MaxLimiti) 

HighPriorReqi = MaxLimiti;LowPriorReqi = 0; 
Elsif (HighPriorReqi < MaxLimiti < HighPriorReqi + LowPriorReqi) 

HighPriorReqi = HighPriorReqi; LowPriorReqi = MaxLimit-
HighPriorReqi; 

 (separation into 3 target variables) 
If (HighPriorReqi + LowPriorReqi <= MinGuari)  

Gi = BHi = BLi = HighPriorReqi + LowPriorReqi;  
Elsif (HighPriorReqi<= MinGuari < HighPriorReqi + LowPriorReqi)  

Gi = BHi = MinGuari; BLi = HighPriorReqi + LowPriorReqi; 
Elsif (MinGuari < HighPriorReqi)  

Gi = MinGuari; BHi = HighPriorReqi; BLi = HighPriorReqi + 
LowPriorReqi; 

 (Water-Filling for Minimum Guaranteed Request) 
While (not all Gi satisfied) and (AV>UnitLength){ 

If Gi not satisfied { 
Alloci = Alloci + UnitLength; 
AV=AV-UnitLength; } 

increment i;} /* now Gi is satisfied */ 
(Water-Filling for High Priority Request) 
While (not all BHi satisfied) and (AV>UnitLength){ 

If BHi not satisfied { 
Alloci = Alloci + UnitLength; 
AV=AV-UnitLength; } 

increment i;} /* now BHi is satisfied */ 
(Water-Filling for Low Priority Request) 
While (not all BLi satisfied) and (AV>UnitLength){ 

If BLi not satisfied { 
Alloci = Alloci + UnitLength; 
AV=AV-UnitLength; } 

increment i;} /* now BLi is satisfied */ 



III. IMPLEMENTATION OF THE DBA ALGORITHM 

Fig. 6 shows the block diagram of the EPON master’s 

main part controlling the EPON specific things including 

DBA. The operation is clearly understood so details will be 

not explained here. Note that the grant resources consumed 

by static gates and CPU gates are considered at the DBA 

block. The DBA gates are generated after static gate 

generation.  
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Fig. 6. Master’s MAC Control Part 

The start time scheduler determines the start time so that 

allocated grants do not overlap. It also subtracts 

corresponding ONU’s RTT value from the start time before 

sending the frame and inserts timestamp. The start time 

scheduler also makes sure that the start time received by the 

ONU is always a future time with at least certain minimum 

distance apart so that the ONUs can setup for the grant usage. 

The DBA gate generation logic is composed of several 

blocks as in Fig. 7. The 4 engines each process 16 ONUs’ 

requests and status information is combined and distributed 

from/to the engines so that the common gate resource value is 

updated correctly and the engines can process the water-

filling operation seeing the common resource value and the 

processing status of other engines. 

In the improved parallel organization, registered ONUs are 

evenly distributed to the 4 engines. This reduces the DBA 

processing time and prevents some time period from not 

being used due to failing to meet the minimum offset 

requirement. 
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Fig. 7. DBA gate generator 

Here, each block’s function is described. 

At the completion of static gate generation, DBA gate 

generation calculates the total available gate length provided. 

The report reading block reads the report table entries and 

puts limits in the report values and separates Gi, BHi and BLi 

values according to the maximum grant length and minimum 

guaranteed length set for each ONU. The reports are each 

cleared after reading. After these values are set-up, actual 

DBA processing starts. 

Each engine processes 16 ONUs’ requests. Each engine 

will have 3 three processing phases – G, BH and BL. For 

each phase, each engine repeats subtracting the basic unit 

from the common resource and adding it to its ONUs until 

they are satisfied or no more resource is left. As 4 engines 

process water-filling, the total available gate length is 

reduced by adequate amount every time unit lengths are 

allocated and the 4 engines monitor the total available length. 

If current phase completes for all ONUs, 4 engines proceed to 

the next phase at the same time. So all engines are in the 

same processing phase with same cyclic ONU indexes. 

IV. PERFORMANCE SIMULATION 

In this scheme, with cycle T and guard time G, the ideal 

total throughput can be calculated as (0.608 is time for report 



frame) 

T
usGNTThroughput 2*)608.0(*

max
+−=  

With 1.024 ms cycle, 2.048 us guard time, this ideal 

maximum throughput for 16 ONUs is 91.7% and for 32 

ONUs, it becomes 83.4%. 

The performance of the CWF DBA algorithm was 

analyzed using VHDL simulation. This VHDL simulation 

runs exactly like the actual circuit including the simulation 

environments. Also, every 2 ms, the upstream frames’ 

bandwidth and delay were measured by averaging for the 

period. This way, we can also see the transient behavior of 

the DBA algorithms. 

To verify the performance and monitor the behavior, 

typical scenarios were selected and simulated. As traffic 

source, self-similar traffic was chosen which is regarded to be 

close to the actual network traffic. Traffic generator based on 

Paxon[6] and which is on the web was used to generate the 

traffic. When generating the sequence using the program 

Hurst parameter was set to 0.99 and the variance was set to 

10 times big as the mean value to get a more dynamic traffic 

pattern with different seeds. Fig. 8 shows a typical traffic 

pattern (for 100% line rate, 64 byte frame) with self-

similarity. 
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Fig. 8. Self-similar traffic sample 

In the first scenario, we have 4 ONTs connected with 

ONT1 : 30%, ONT2 ~ ONT4 : 10% load all with 64 byte 

frame. Thus, total traffic is 60% - normal traffic load. Load is 

represented by the portion of traffic consisting of frame, 

preamble and minimum IFG relative to 1 Gbps. ONT3’s 

traffic is turned off during a period. The fiber length is 10 km 

and ONT’s upstream buffer size is 128 KB for each priority. 

In the second scenario, we have 4 ONTs but with each ONT 

having twice as much traffic, resulting in 120% load - an 

over-traffic case. ONT3’s traffic is also turned off during the 

same period. In the two scenarios, only priority 0 traffic is 

applied. Priority scheduling in ONT was simulated too, but 

this paper is focused on OLT scheduler. 

As can be seen in Fig. 9, when cycle was chosen to be 1 

ms, mean delay is about 1.5 ms.  Initial delay is also bound 

approximately to 1.5 ms because polling is performed every 

cycle time. There is no loss in the bandwidth utilization in 

both normal and over-traffic cases (10% load corresponds to 

76.19 Mbps when 64 byte frame is used). In over-traffic case, 

during the period when ONT3 traffic is off, the excess 

bandwidth is utilized to deliver ONT1’s traffic. 
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Fig. 9. Bandwidth and delay for scenarios 1 and 2 

To verify that the minimum guaranteeing and priority 

control works correctly, a third scenario was deliberately 

devised. With 5 ONTs, the traffic high and low priority 

traffic composition, and the minimum guaranteed bandwidth 

were set as shown in Fig. 10. As before, ONT 3’s traffic is 

turned off during a period as before. 
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Fig. 10 traffic composition and min BW setting 

If the DBA works as the algorithm, in steady state, the 

allocation should occur as below. Acc_BW value represents 

cumulative allocated bandwidth after processing. 

Unit : Mbps 

phase 1 2 3 4 5 Acc. 
BW 

1st  150 100 100 100 100 550 
2nd  0 0 100 200 0 850 
3rd  0 50(50) 200(50) 0 200(50) 1000 

Final 150 150 250 300 150  

The water-filling style allocation occurs only during 3rd 

phase. The number in parenthesis shows the allocated 

bandwidth using water-filling allocation. Fig. 11 shows the 

expected result. (The load is relative to 100Mbps wire speed, 

so 100Mbps wire load means 76.2 Mbps) 
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Fig. 11. Simulation result for scenario 3 

With all the dynamic bandwidth allocation and priority 

control shown as before, the delay and throughput 

performance was simulated for 32 ONTs. Fig. 12 shows the 

performance for 32 ONTs for different loads and cycle time. 

V. CONCLUSION 

The previously implemented and modified DBA provides 

stability in over-traffic with enough upstream through-put. It  

* Delay is shown clamped to 10 ms
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Fig. 12. Performance for 32 ONTs 

provides low worst case delay due to its periodic polling 

scheme. It also provides maximum limit and minimum 

guaranteed rate control for each ONU. But the performance 

degrades when more than 64 ONUs are attached due to 

wasted time during water-filling. 
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