
An Improved Cyclic Water-Filling EPON DBA
Providing Priority Scheduling and Faster Allocation Time

Chan Kim*, Tae-Whan Yoo, Bong-Tae Kim

(ckim*,twyoo, bkim)@etri.re.kr

ETRI, 161 Gajeong-Dong,Yuseong-goo,Daejeon,305-350 KOREA

Tel : +82-42-860-5773 Fax : +82-42-860-5213

Abstract - A cyclic water-filling EPON(Ethernet Passive Optical

Network) DBA(Dynamic Bandwidth Allocation) algorithm and

its implementation in an ASIC are described with future

improvements. Every cycle, short static gates are generated to

collect reports and dynamic gates are generated according to the

reports collected in previous cycle. In each cycle, unit length is

additively allocated to the ONUs in a cyclic fashion until all the

requests are satisfied or no resource is left. Four parallel engines

are used to process the requests. As improvements, priority will

be considered, and the processing burden will be evenly

distributed to the 4 parallel engines in any case.

Keywords – EPON, DBA, Water-filling

I. EPON AND DBA

FTTH(Fiber To The Home) is becoming a practical

solution for access network and has already been deployed in

some countries. Among the FTTH technologies, EPON

(Ethernet Passive Optical Network) standardized by the

IEEE802 [1] is the most promising scheme due to its internet

friendliness and low cost nature.

EPON comprises an OLT (Optical Line Termination) in

the central office and many ONU (Optical Network Unit)s in

the residential area. A single fiber connects the OLT to the

residential area and passive splitter is used to connect many

ONUs in that area to the fiber. The unit of data transport is

the Ethernet frame and a tag called LLID(Logical Link ID) is

used in the preamble to make the PON topology appear as

many point-to-point links. The LLID is assigned to each

ONU during the discovery procedure. In downstream, the

LLID indicates the destination ONU, and in the upstream, in

indicates the source ONU. Using LLIDs, bridges in the OLT

or ONU can perform the bridge operation of source MAC

learning, destination MAC look-up and forwarding,

etc(Fig.1) as in other topologies.

OLT

ONU
LLID=1

ONU
LLID=2

ONU
LLID=3

Subscriber

Network

Subscriber

Subscriber

Subscriber

Subscriber

Subscriber

Network

LLID=1LLID=2

LLID=1

LLID=2

LL
ID

=1

LLID=2LLID=2 LLID=1
LL

ID
=1

LL
ID

=2

LLID=1LLID=2

LLID used section

LLID
=1

LLID
=2

Fig. 1. Usage of LLID in EPON

Downstream optical signal is broadcast to all ONUs and

upstream optical signal sent by an ONU goes only to the

OLT. To avoid contention in the upstream direction, the OLT

should arbitrate the upstream transmission of the ONUs

allocating upstream bandwidth resource to them. This

operation is called DBA (Dynamic Bandwidth Allocation).

The upstream bandwidth request is delivered using report

frames containing the needed grant length and gate frames

are delivered to the ONUs which contains the grant

information in the form of (start time, length) pair.

To arbitrate upstream transmission, timer is used in OLT

and ONUs. ONUs’ timer is synchronized to that of OLT and

OLT measures the RTT (Round Trip Time) of each ONU by

subtracting from the OLT timer the timestamp delivered from

the ONU. Before gate transmission, the OLT subtracts

corresponding RTT value from the start time to compensate

for the distance difference.

We have developed EPON master [2][3], slave chips. The

master ASIC integrates two EPON ports and each port

connects up to 64 ONUs. The DBA employs a simple cycle-

based water-filling algorithm providing stable and high

enough performance with necessary bandwidth provisioning

capability. Fig. 2 shows the picture of the master ASIC which

is being used in a commercial service in the city of Gwang-

Joo for about 1500 subscribers as of Dec. 2006.

Fig. 2 Picture of the EPMC chip

We are revising the chip with some improvements in the

algorithm and implementation architecture. This paper is on

the improved version of the CWF (Cyclic Water-Filling

DBA) algorithm. The organization of the paper is as follows.

Our DBA algorithm is explained in section 2 and the

implementation is described in section 3. The improvements

are explained together with indications. Section 4 gives a

brief result of the performance and section 5 concludes.

II. RELATED WORKS AND WATER-FILLING DBA

ALGORITHM

In paper [4], a natural DBA algorithm is suggested where

bandwidth is allocated in the order of fixed allocation, high

priority and low priority requests in strict priority algorithm.

When congested, the available length is allocated with

weights proportional to the requests. [5] tried to solve the

starvation problem of this previous work and shows better

performance with respect to fairness. But these works, like

most others in the literatures, need floating point operation

which is difficult to implement without CPU or DSP and

does not consider the timing between reports and gates

(grants).

This paper is based on our previous work [2] and addresses

its functional and performance upgrades to be made in the

future. As before, the proposed and implemented water-

filling DBA scheme does not need any floating point

computation yet providing faster allocation time and control

over priority in the requests.

Our DBA scheme is cycle based where short static gates

are generated for each registered ONUs to make sure reports

are collected every cycle and the remaining time is

dynamically allocated to the ONUs according to the reports

received from previous cycle. Fig. 3 shows the timing

relation between downstream gates and upstream bursts.

Reports are delivered at the end of every burst. Bandwidth is

controlled by controlling the gate length per cycle.

1

2

3

LLID 3

LLID 2

LLID 1

static
gates

dynamic
gates

reports
by static
window

cycle

Data bursts

Fig. 3 report and gate timing in cycle

Allocating the remaining time to the ONUs is like water-

filling in that unit length is subtracted from the available gate

resource time and added to each ONU in a cyclic fashion

until the requests are all satisfied or the resource runs out.

This algorithm also makes it possible to put a limit in the

dynamic gate length and to provide minimum guaranteed

dynamic gate length for each ONU while considering priority

information in the requests.

The original 8 priority queue reports are mapped to high

and low priority, and then max-limited and converted to

guaranteed (G), high (H) and low (L) values. Then, three

DBA processing target variables of guaranteed (G), up-to-

high (BH=G+H) and up-to-low (BL=G+H+L) are derived.

Water-filling is done for these 3 phage variables. At each

phase, unit lengths are cyclically allocated until the

corresponding phase’s request variables are satisfied for all

the ONUs or the remaining gate runs out. Fig. 4 shows how

the 3 target variables are calculated for actual water-filling

processing phases.

H

L

Max
limit

H

L

Max
limit

H

L

Max
limit

H

L

Max
limit

H

L

Max
limit

H Max
limit

L=0

H

L

Min
Guar

H

L

Min
Guar

H

L

Min
Guar

G

G

L

H

L

Maximum Limiting
before water-filling

Separation into Guaranteed, Up-to-High and Up-
to-Low for Water-filling action after Max-limiting

G,BH,BL

G,
BH

BL

G BH

BL

Fig. 4 pre-processing before water-filling

Fig. 5 shows the example of the allocation result using the

proposed and implemented dynamic gate allocation algorithm

for 2 different cycles. In the figure, each bar represents

ONUs’ requests. The lowest part of each bar is the minimum

guaranteed gate length and the filled area is the allocated gate

length. In cycles like case a), some ONUs’ requests were not

satisfied because no grant time is left at the final allocation

stage. In cycles like case b), all the requests were satisfied

and resource is left after DBA processing.

a) Not all requests satisfied

b) All requests satisfied

Total request

Final allocated

Minimum guaranteed

Final allocated
=Total request

Minimum guaranteed

Fig. 5. Water-filling DBA algorithm

The water-filling algorithm can be represented as below

where AV is total available gate length at given time.
(fixed allocation subtraction)

AV = AV - ∑
=

N

i 1
FixedGateLengthi;

(CPU reserved length subtraction)

AV = AV - ∑
=

M

i 1
CpuGateLengthi (if any);

(adjustments for maximum limiting)
If (HighPriorReqi >= MaxLimiti)

HighPriorReqi = MaxLimiti;LowPriorReqi = 0;
Elsif (HighPriorReqi < MaxLimiti < HighPriorReqi + LowPriorReqi)

HighPriorReqi = HighPriorReqi; LowPriorReqi = MaxLimit-
HighPriorReqi;

 (separation into 3 target variables)
If (HighPriorReqi + LowPriorReqi <= MinGuari)

Gi = BHi = BLi = HighPriorReqi + LowPriorReqi;
Elsif (HighPriorReqi<= MinGuari < HighPriorReqi + LowPriorReqi)

Gi = BHi = MinGuari; BLi = HighPriorReqi + LowPriorReqi;
Elsif (MinGuari < HighPriorReqi)

Gi = MinGuari; BHi = HighPriorReqi; BLi = HighPriorReqi +
LowPriorReqi;

 (Water-Filling for Minimum Guaranteed Request)
While (not all Gi satisfied) and (AV>UnitLength){

If Gi not satisfied {
Alloci = Alloci + UnitLength;
AV=AV-UnitLength; }

increment i;} /* now Gi is satisfied */
(Water-Filling for High Priority Request)
While (not all BHi satisfied) and (AV>UnitLength){

If BHi not satisfied {
Alloci = Alloci + UnitLength;
AV=AV-UnitLength; }

increment i;} /* now BHi is satisfied */
(Water-Filling for Low Priority Request)
While (not all BLi satisfied) and (AV>UnitLength){

If BLi not satisfied {
Alloci = Alloci + UnitLength;
AV=AV-UnitLength; }

increment i;} /* now BLi is satisfied */

III. IMPLEMENTATION OF THE DBA ALGORITHM

Fig. 6 shows the block diagram of the EPON master’s

main part controlling the EPON specific things including

DBA. The operation is clearly understood so details will be

not explained here. Note that the grant resources consumed

by static gates and CPU gates are considered at the DBA

block. The DBA gates are generated after static gate

generation.

Tx
Mux

Rx
De-mux

Static Gate
Generator

Dynamic
Gate

Generator
(DBA)

Static
Gate
Table

Static Gate
Queue

Dynamic Gate
Queue

Tx Message Queue
Start
Time

Scheduler

RTT
Table

Report
Table

Data from PON Bridge

Rx Message Queue

Data to PON Bridge

CPU
I/F

Data to PON

Data from PON

Burst
Window

Input
Window

Generator

Fig. 6. Master’s MAC Control Part

The start time scheduler determines the start time so that

allocated grants do not overlap. It also subtracts

corresponding ONU’s RTT value from the start time before

sending the frame and inserts timestamp. The start time

scheduler also makes sure that the start time received by the

ONU is always a future time with at least certain minimum

distance apart so that the ONUs can setup for the grant usage.

The DBA gate generation logic is composed of several

blocks as in Fig. 7. The 4 engines each process 16 ONUs’

requests and status information is combined and distributed

from/to the engines so that the common gate resource value is

updated correctly and the engines can process the water-

filling operation seeing the common resource value and the

processing status of other engines.

In the improved parallel organization, registered ONUs are

evenly distributed to the 4 engines. This reduces the DBA

processing time and prevents some time period from not

being used due to failing to meet the minimum offset

requirement.

DBA
engine

DBA
engine

DBA
engine

DBA
engine

Combiner

Report
Reading

DBA
Gate

Frame
Gene.

Report Read
And Clear

Start
Up-to-High

Request

Allocated
lengths

Status

Control

Gate Frame Generation Start

Total Available
DBA Gate

DBA cycle
Start Signal

DBA
Gate

Frames

Guaranteed

Up-to-Low
Request

Fig. 7. DBA gate generator

Here, each block’s function is described.

At the completion of static gate generation, DBA gate

generation calculates the total available gate length provided.

The report reading block reads the report table entries and

puts limits in the report values and separates Gi, BHi and BLi

values according to the maximum grant length and minimum

guaranteed length set for each ONU. The reports are each

cleared after reading. After these values are set-up, actual

DBA processing starts.

Each engine processes 16 ONUs’ requests. Each engine

will have 3 three processing phases – G, BH and BL. For

each phase, each engine repeats subtracting the basic unit

from the common resource and adding it to its ONUs until

they are satisfied or no more resource is left. As 4 engines

process water-filling, the total available gate length is

reduced by adequate amount every time unit lengths are

allocated and the 4 engines monitor the total available length.

If current phase completes for all ONUs, 4 engines proceed to

the next phase at the same time. So all engines are in the

same processing phase with same cyclic ONU indexes.

IV. PERFORMANCE SIMULATION

In this scheme, with cycle T and guard time G, the ideal

total throughput can be calculated as (0.608 is time for report

frame)

T
usGNTThroughput 2*)608.0(*

max
+−=

With 1.024 ms cycle, 2.048 us guard time, this ideal

maximum throughput for 16 ONUs is 91.7% and for 32

ONUs, it becomes 83.4%.

The performance of the CWF DBA algorithm was

analyzed using VHDL simulation. This VHDL simulation

runs exactly like the actual circuit including the simulation

environments. Also, every 2 ms, the upstream frames’

bandwidth and delay were measured by averaging for the

period. This way, we can also see the transient behavior of

the DBA algorithms.

To verify the performance and monitor the behavior,

typical scenarios were selected and simulated. As traffic

source, self-similar traffic was chosen which is regarded to be

close to the actual network traffic. Traffic generator based on

Paxon[6] and which is on the web was used to generate the

traffic. When generating the sequence using the program

Hurst parameter was set to 0.99 and the variance was set to

10 times big as the mean value to get a more dynamic traffic

pattern with different seeds. Fig. 8 shows a typical traffic

pattern (for 100% line rate, 64 byte frame) with self-

similarity.

ONT 1

0

20

40

60

80

100

120

1 726 1451 2176 2901 3626 4351 5076 5801 6526 7251 7976

time/2ms

B
W

 (
M

b
p
s)

ONT 1

Bandwidth (40.96 ms ~ 51.2 ms)Bandwidth (0 ms ~ 81.92)

ONT 1

0

20

40

60

80

100

120

1 93 185 277 369 461 553 645 737 829 921 1013

time/2ms

B
W

 (
M

b
p
s)

ONT 1

Fig. 8. Self-similar traffic sample

In the first scenario, we have 4 ONTs connected with

ONT1 : 30%, ONT2 ~ ONT4 : 10% load all with 64 byte

frame. Thus, total traffic is 60% - normal traffic load. Load is

represented by the portion of traffic consisting of frame,

preamble and minimum IFG relative to 1 Gbps. ONT3’s

traffic is turned off during a period. The fiber length is 10 km

and ONT’s upstream buffer size is 128 KB for each priority.

In the second scenario, we have 4 ONTs but with each ONT

having twice as much traffic, resulting in 120% load - an

over-traffic case. ONT3’s traffic is also turned off during the

same period. In the two scenarios, only priority 0 traffic is

applied. Priority scheduling in ONT was simulated too, but

this paper is focused on OLT scheduler.

As can be seen in Fig. 9, when cycle was chosen to be 1

ms, mean delay is about 1.5 ms. Initial delay is also bound

approximately to 1.5 ms because polling is performed every

cycle time. There is no loss in the bandwidth utilization in

both normal and over-traffic cases (10% load corresponds to

76.19 Mbps when 64 byte frame is used). In over-traffic case,

during the period when ONT3 traffic is off, the excess

bandwidth is utilized to deliver ONT1’s traffic.

0.0

50.0

100.0

150.0

200.0

250.0

300.0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

time/2ms

B
W

 (
M

bp
s) ONT 1

ONT 2

ONT 3

ONT 4

0.0

0.5

1.0

1.5

2.0

2.5

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

time/2ms

d
e
la

y(
m

s) ONT 1

ONT 2

ONT 3

ONT 4

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

time/2ms

B
W

 (
M

bp
s) ONT 1

ONT 2

ONT 3

ONT 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

time/2ms

d
el

ay
 (

m
s) ONT 1

ONT 2

ONT 3

ONT 4

2-a) Bandwidth – over traffic

2-b) delay – over traffic

1-a) Bandwidth – normal traffic

1-b) delay – normal traffic

Fig. 9. Bandwidth and delay for scenarios 1 and 2

To verify that the minimum guaranteeing and priority

control works correctly, a third scenario was deliberately

devised. With 5 ONTs, the traffic high and low priority

traffic composition, and the minimum guaranteed bandwidth

were set as shown in Fig. 10. As before, ONT 3’s traffic is

turned off during a period as before.

H

L

H

L
H

L

150

200

150 400

H

300

L

100

300

LLID 1 2 3 4 5

Min guaranteed

300

400

Fig. 10 traffic composition and min BW setting

If the DBA works as the algorithm, in steady state, the

allocation should occur as below. Acc_BW value represents

cumulative allocated bandwidth after processing.

Unit : Mbps

phase 1 2 3 4 5 Acc.
BW

1st 150 100 100 100 100 550
2nd 0 0 100 200 0 850
3rd 0 50(50) 200(50) 0 200(50) 1000

Final 150 150 250 300 150

The water-filling style allocation occurs only during 3rd

phase. The number in parenthesis shows the allocated

bandwidth using water-filling allocation. Fig. 11 shows the

expected result. (The load is relative to 100Mbps wire speed,

so 100Mbps wire load means 76.2 Mbps)

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23

time/4ms

B
W

 (
M

b
p
s)

ONT 1

ONT 2

ONT 3

ONT 4

ONT 5

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23

time/4ms

d
el

ay
 (

m
s)

ONT 1

ONT 2

ONT 3

ONT 4

ONT 5

3-a) Bandwidth – scenario 3 3-b) delay – scenario 3

Fig. 11. Simulation result for scenario 3

With all the dynamic bandwidth allocation and priority

control shown as before, the delay and throughput

performance was simulated for 32 ONTs. Fig. 12 shows the

performance for 32 ONTs for different loads and cycle time.

V. CONCLUSION

The previously implemented and modified DBA provides

stability in over-traffic with enough upstream through-put. It

* Delay is shown clamped to 10 ms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

throughput-CWF 0.7 ms throughput-CWF 1 ms throughput-CWF 2 ms

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2

mean delay-CWF 0.7 ms mean delay-CWF 1 ms mean delay-CWF 2 ms

Fig. 12. Performance for 32 ONTs

provides low worst case delay due to its periodic polling

scheme. It also provides maximum limit and minimum

guaranteed rate control for each ONU. But the performance

degrades when more than 64 ONUs are attached due to

wasted time during water-filling.

REFERENCE

[1] IEEE802.3ah standard, Sep. 2004.

[2] Su-Il Choi and Jae-Doo Heo, “Dynamic Bandwidth

Allocation Algorithm for Multimedia Services over

Ethernet PONs”, ETRI Journal, Vol. 24, no. 6 Dec. 2002.

[3] Seong-Ho Jang, Jin-Man Kim and Jong-Wook Jang,

“Performance Evaluation of New DBA Algorithm

Supporting Fairness for EPON”, TENCON 2004. 2004

IEEE Region 10 Conference Vol. C, pp. 29 - 32 Vol. 3,

21-24 Nov. 2004.

[4] Chan Kim, Tae-Whan Yoo, Yool Kwon and Bong-Tae

Kim, “Design and implementation of an EPON DBA

algorithm”, BMW2005, Whistler, B.C. Canada, Oct.

2005.

[5] Chan Kim, Tae-Whan Yoo, Yool Kwon and Bong-Tae

Kim, “Design and Implementation of an EPON Master

Bridge Function in an ASIC”, ISCC2006, Pula-Cagliari,

Italy, Jun. 2006.

[6] Vern Paxon, “Fast, Approximate Synthesis of Fractional

Gaussian Noise for Generating Self-Similar Network

Traffic,” ACM SIGCOM, Computer Communications

Review, 27(5):5-18, 1997.

