
ICACT’99 paper

 1

Implementation of a QOS buffering in ASAH-L4 ASIC
with Weighted Round-Robin and Maximum Delay Threshold

Chan Kim, SangHo Lee, GangUk Hwang, ByungDo Go, JaeGeun Kim

ETRI , 161 Kajeong-dong, Yusong-gu, Taejon, Korea , ckim@etri.re.kr

Abstract -- This paper describes an implementation of a QOS

buffering in a 622Mbps ATM layer processing ASIC called
ASAH-L4. It is based on linked list shared buffer using external
SRAM and adopts simple weighted round-robin for multi-port,
multi-class traffic groups. Then we propose a refinement of this
scheme to limit the total queuing delay for some selected sub-
queues which is possible by incorporating the next cell’s arrival
time in the linked list storage unit. This whole mechanism provides
bandwidth priority over several classes of traffic while
guaranteeing minimum bandwidth for low priority classes and it
explicitly controls time delay for some high priority classes.

Keywords – ATM, QOS, shared memory, scheduling

I. BACKGROUND
Shared Memory Buffering using Linked List

Buffer
 Control

Input
Control

Output
Control

Fig.1 General Shared Buffer QOS Buffering

In ATM switches, cells received from physical lines are

stored into a large buffer memory before or after switching.
For priority service scheduling for QOS support, the cells are
stored into separate queues according to their destined port
and QOS class information retrieved from the cell header.
These separate buffer queues are generally implemented
using common external SRAM memory and many sub-
queues are formed using linked list data structure in the
SRAM.

When a cell is to be stored at a specific sub-queue, a new
storage location is assigned and the cell is stored into that
location. The location is then linked to the tail of the
corresponding sub-queue by writing the new address pointer
to the previous tail location. When a cell is to be read out
from a specific sub-queue, the cell is read from the head of
the specific sub-queue and the sub-queue’s head address is
updated to the next head address pointed to by the location

being read. These cell locations linked together by pointers
form virtual FIFO memories and the queue manager should
manage the head and tail address of each sub-queue as well
as the queue level each time a cell enters or exits its sub-
queue. Fig.2 shows the general form of linked list shared
buffer ATM QOS buffering scheme and the same method
was used in ASAH-L4.

QT0

QH0
...

FH

FT QTN

QHN

Shared Memory Buffer

ATM Cell ATM Cell

Fig.2 Queue Formation with Linked List

Prior Service Scheduling Methods
In ATM switches, it is required to support various QOS

grades for each connection which are negotiated during the
call setup. In ATM, the QOS is defined by cell loss ratio, cell
delay, and cell delay variation. Some real-time CBR traffic
is delay sensitive but not loss-sensitive while other VBR data
traffic is loss-sensitive but delay insensitive. These traffics
have different QOS requirements. To meet these various
requirements, ATM switches, in dealing with the buffering
and service scheduling, must exhibit a well-defined priority
service scheme. Many kinds of priority algorithms and
architectures were devised. Simply putting absolute priority
is not enough because when high-priority traffic enters the
buffer with a long burst period, the low priority traffic will be
delayed too much and high priority traffic will be serviced
unnecessarily too fast. In an architecture shown in Chao’s
paper[1], to handle different levels of loss and delay priorities
independently, the cell departure and possible loss sequence
is independently scheduled by delay and loss priority
sequencer chips and the cell’s departure and removal during
congestion is governed by the sequence arranged by the
sequencers. The sequencer chips inserts and shifts in
parallel and distributive manner the priority and address of
the cells every time a new cell is arrived. Katevenis [2]
presents another architecture where the shared memory is
implemented using CAM and priority encoder for

ICACT’99 paper

 2

implementing free buffer pool. In his paper, the ATM cell is
made into a single word(53x8 bit long) and the scanning
memory has the location of the store cell. A state machine
scans the scanning memory while servicing and
decrementing the weigh values cycling through the scanning
memory. In this way, the bandwidth allocation is spread out
in a cycle. The most advanced of service algorithms to the
author’s eyes is Yurie Systems’[3]. Here, basically queues
with higher output ranking gets serviced prior to queues with
low output ranking. But sub-queue with its aging counter
reached at its threshold is serviced with highest priority. And
among the same output ranking, sub-queues which has
reached its minimum queue level is served first. The
minimum level is defined for each classes and this has an
effect of negative feedback on the increasing buffer length
and is taking the real traffic inflow situation into account.
Another good mechanism is purging the queue with lowest
loss priority first when buffer resource is detected low.

This paper describes an implementation of a QOS
buffering in a 622Mbps ATM layer processing ASIC called
ASAH-L4 which basically adopts weighted round-robin
service scheduling. Then, this paper presents a refinement of
this implementation. This new scheme, with the weighted
round robin scheduling, can provide the efficiency and
flexibility to provides the means for directly controlling cell
delays for some classes as well as assigning bandwidth usage
priority for all classes.

II. QOS BUFFERING IN ASAH-L4 ASIC

Architecture of ASAH-L4 ASIC
Fig. 3 shows the architecture of ASAH-L4 ASIC. The

QOS buffer control block resides in the Receive Cell Router
(QBWB_RX) and Transmit Cell Router (QBWB_TX). The
receiver and transmitter function of the Cell Router is the
same except for some differences. The QBWB_RX
performs basic cell routing functions such as loopback,
extraction, buffering, passing (non-buffering mode) and also
performs other processing like header replacement, tagging,
discarding, RM field replacement, etc. gathering information
coming from table lookup, UPC, and OAM blocks. The
QBRB pre-pends routing tag in receiver direction and it
inserts PM cells in the transmit direction because PM cell
insertion is closely related to actual cell transmission.

For QOS buffering, the shared memory is divided into
maximum 8 sub-queues according to classes in the receiver
direction. For transmit direction, the shared memory is
largely divided into maximum 8 port queues and each port
queue is divided into maximum 8 sub-queues according to
number of ports and classes used. The shared memory is
fully shared by all ports and class sub-queues dynamically
using the linked list method previously explained. Since the
theme of this paper is the QOS buffering of this ASIC, only
the interaction of QOS buffer controlling block internal to the
QBWB block will be discussed with regard to QOS buffering.

Cell Buffer
SRAM Interface

Tx UTOPIA-2
Interface

Rx UTOPIA-2
Interface

UTOPIA
RX

UTOPIA
TX

Table
Lookup

&Update

Table
Lookup

&Update

Switch
I/F

Switch
I/F

OAM
Rx

UPC

OAM
Tx

QBWB
RX

QBRB
RX

QBWB
TX

QBRB
TX

Rx VC Table
SRAM Interface

VMIB_TX

CMIB CPU I/F

Cell Extraction
Buffer

Test Cell

Status Report
Queue

Loopback Cell

Test Cell

VMIB_RX

Tx VC Table
SRAM Interface

Tx Switch
Interface

Rx Switch
Interface

CPU
Interface

PMEM

Fig.3 Block Diagram of ASAH-L4 ASIC

When Table Lookup requests a new cell’s processing with

a cell waiting in UTOPIA FIFO and with all UPC and OAM
processing has finished, the QBWB block determines where
the cell should go. In QOS mode, when the cell should be
stored into a specific sub-queue, the QBWB block assigns a
free buffer location and writes the cell into the new address
and updates the queue data. At the same time, after
scheduling, the QBWB requests a cell’s service to QBRB.
The QBRB reads the cell and as soon as the service starts,
reports the completion to the QBWB with data for updating
the sub-queue like new header address.

Actually, the Output Controller in the figure is the QBRB
and all others are implemented in QBWB but the block
hierarchy can be appropriately determined for synthesis and
layout efficiency with human convenience in understanding.
The actual implementation is free to designers.

Service Scheduling in ASAH-L4 ASIC
The refined service algorithm of ASAH-L4 is described in

this section. It is a merged version of weighted round-robin
plus delay threshold. The real implementation did not
include the maximum queue delay threshold. But here, rather
than separately explaining the actual implementation and the
refinement, we chose to describe only the refined version of it,
from which the reader can easily guess what was
implemented and what is the refined feature of it.

The purpose of this algorithm is to serve the sub-queues in
a programmable sequence and at the same time to limit the
queuing delay to programmable amounts for some delay-
sensitive classes. This can be though of as assigning priority
and guaranteeing minimum value on bandwidth usage ratio
while limiting actual queuing delay to programmable amount
for some classes. The controlled delay value is set on real
time unit basis not like those guessed from queue length as in
conventional methods. The service scheduler runs in
parallel with the actual service processes. It launches a new
service and as soon as the service begins, starts the decision
process for the next cell because the queue data will be
updated right after the start of a service. This scheduling
action is fast enough not to cause the system to wait for the
decision to finish. From the point of server’s view, the time

ICACT’99 paper

 3

for the decision in the scheduler is buried into the server’s
processing time and is invisible.

In this paper, it is assumed that the shared memory is
divided into many sub-queues according to the output port
and service class. The scheduler decides which sub-queue to
service next. It first determines the service port and then the
service class. For each port and class, there is a sub-queue
associated with it. There is a programmable sequence
register for service port and service class. The port sequence
defines in what order the non-empty ports will be serviced
and the class sequence register defines in what order the non-
empty classes will be serviced for a port. Fig. 5 shows the
concept of sequenced service. In the actual implementation,
since there can be maximum 8 ports and 8 classes for
transmitter, and 8 classes for receiver, the port sequence
register and class sequence register are 16 entry long. This
puts an limitation on the granularity on the priority
assignment but we thought it doesn’t matter much for
intended level of QOS support. The index pointers of class
sequence register is independently maintained for each port
thus the class sequence is preserved for all ports regardless of
other intervening port services.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5

Service Port
Sequence Register

Service Class
Sequence Register

Fig.4 Sequence Register for Ports and Classes

Besides, for each class, there is a maximum queue delay
threshold register. Starting the decision, the service
scheduler checks if any sub-queue has a cell at its head
location which has reached or passed its maximum delay
threshold. If such sub-queue exists, that sub-queue is selected.
If such sub-queue is not detected, it starts scanning the port
sequence register and class register as explained above.
This parallel examination of cell delay(current time minus
arrival time) is made possible by putting time stamp of next
arrival time in the linked list storage unit as shown in Fig. 5.

Next Cell Pointer

ATM Cell
(13 word)

Next Cell Arrival

VC Table Address

Fig. 5 Unit Storage Format

This storage unit contains ATM cell, the pointer to link the
storage units into logical FIFO, and the arrival time of the
next cell. This next arrival time is not written at the time the
contained cell is written but is written later with the next
pointer when a new cell is linked after that location. Fig. 6
shows how the time stamp is written. The unit also contains
the VC table’s address the cell belongs to. This field is used
to retrieve routing tags in the receiver and to retrieve

multicast port id and keeping track of statistics data in the
transmitter.

T1 T3T2

T2 T3queue-N

Fig.6 Next Arrival Time Stamping

For simplicity, the processing blocks in QBWB and QBRB
related to QOS buffering can be simplified as in Fig. 7.
They can be organized into external shared memory, input
controller, output controller, queue manager, free buffer
manager, and service scheduler.

The external shared memory is segmented into basic
storage units as shown in Fig. 5 and the unused storage units
are also connected into linked list and this list is called free
list. This free-list is managed by the free-list manager. The
FLM gives a free address when requested by input controller
and appends a used address to the free list when requested by
the output controller.

Service
Scheduler

Queue
Manager

Input
Controller

Output
Controller

Queue Data

External Shared Memory
(SRAM)

Free
Buffer

Manager

Fig. 7 QOS Buffer Control Blocks

The queue manager updates the head, tail, length of each
queue and also updates the next arrival time of the cells
located at all sub-queues. The arrival time is used to calculate
actual queuing delay of cells at the head of line of each sub-
queue.

The input controller, requests a free address when received
a cell and writes the cell into that location and links it to the
tail of the corresponding sub-queue by writing the new
address into the previous tail location. It also write the arrival
time to the previous tail location so that the output controller
can know the arrival time of the next head cell when reading
from the head of a sub-queue. The input controller has
optional selective discard mode and buffer level threshold
discard function.

The output controller receives the service address from the
queue manager and reads cell from that address. It informs
the service completion to the queue manager providing next

ICACT’99 paper

 4

head address and next arrival time for the serviced sub-queue
as soon as this information becomes available. Since these
data are read before the actual cell, the queue manager
updates the queue data earlier before the actual service
completion, the scheduler can start the decision process and
finish the decision well before the service completion.

The Queue manager internally manages all the sub-
queues’ head, tail, length and next arrival time. In ASAH-
L4, since the head, tail, and length data is kept in DPRAM,
the manager performs read-modify- write for sub-queues
when a cell enters or exits any sub-queue. In the mean time,
some flags like whether it is empty or not, whether the level
is one or not(this is used for some marginal cases in pointer
update). If we want to consider the queue level in the
scheduling, the level data still can be kept in DPRAM and
needed flags like whether the level got greater than some
threshold can be updated during the read-modify-write action.
Even the arrival time(i.e., waiting time) can also be stored in
DPRAM in the same way because the waiting time is derived
from arrival time by subtracting it from the current time
which incremented regardless of the queue states.

The queue manager returns the tail address and empty flag
to the input controller so that the input controller can link the
new cell or bypass the linking when empty. It also updates
the tail address and head address(when a cell enters an empty
sub-queue). It increments the sub-queue’s level by one.

On receiving the selected sub-queue index from the
scheduler, the queue manager passes the selected sub-queue’s
head address to the output controller and requests service. It
also updates the serviced queue’s head and next arrival time
when informed the completion of the service. It also
decrements the queue’s level by one.

The queue manager provides all the queue length (in
ASAH-L4, only the flag whether the sub-queue is empty or
not), the arrival time of the cell in the head of line of each
sub-queue for scheduling.

The housekeeping operations are apparent for entering and
exiting events but there are numerous complex cases like
“entering into a sub-queue when it is being serviced and not
updated yet” etc. In some cases the header replacement after
queue service should be disabled when the queue is going
empty or a new cell has arrived during the service launch
causing the queue level out of empty state. The queue
manager takes all these cases into account and keeps the sub-
queues information always correct.

The service scheduler determines the sub-queue to be
serviced and lets the index out to the queue manager. And
begins the new decision process as soon as the queue data is
updated right after the cell buffer read and head/level update.
As mentioned earlier, this process is quick enough and it
skips the entry when no cell is in it. This makes the scheduler
always stay in “decide and wait” state and guarantees the
performance bottleneck becomes actual cell reading and
outing process. This is important for the 622Mbps throughput
of the device. On scanning the sequence register, the
scheduler examines whether there’s any time-overred sub-
queue. If it exists, that queue is serviced but if not, regular
sequence scanning initiates. The port index stops at the next

position when a port is selected and the class index of the
port is also stored in the next position when a sub-class of the
port is selected. And the stored class index is later used when
that port is selected again. This ensures that the class
sequencing is preserved for each port. Fig. 8 again
illustrates then scheduling algorithm mentioned above.

Service Completed and
Cell to Service Exists

Any Sub-Queue Reached
Maximum Time Delay?

Select non-empty Port
using Sequence Register

Directly Select the
Port and Class

Select non-empty Class
using Sequence Register

Launch New
Sub-Queue Service

Fig. 8 Service Scheduling Algorithm

Meeting Throughput Requirements

All these functions were(excluding the arrival time related

processing) implemented in ASAH-L4 and it operates at
50MHz. But this limitation comes not from internal gate
delay but from the fact the whole chip runs at a single clock
which is also given out as the UTOPIA master clock and is
limited to 50MHz. But if the architecture is slightly modified
to accommodate the asynchronous operation between
UTOPIA and internal processing, there will be more
processing gain achieved. In 622Mbps ATM, the cell
arrives every 675 nsec and this is about 34 clocks in 50MHz
operation. To handle this amount of traffic with all the table
lookup, OAM procedures including PM, and UPC, and
writing and reading ATM cells into share memory, it is
necessary to use separate memory for VC table and cell
memory. So in ASAH-L4 there are separate interfaces for
RX VC table and TX VC table and cell buffer memory.
Accessing VC table and cell memory is performed at the
same time in parallel. Using 32 bit memory bus, it takes 14
clocks to write ATM cell(12 for cell, 1 for pointer, and 1 for
VC table address) and also 14 clock for cell reading. Besides,
to link the sub-queues and update free-list, we need 2 more
clocks. So there is 30 clocks needed in the cell memory bus
for every cell passing it. To meet this requirement, the local
SRAM interface was very optimized not to loose clock cycles
during arbitration and data movement. All details of these
techniques will not be discussed here.

III. Conclusion

This paper describes the QOS buffering implementation in
a 622Mbps ATM layer ASIC called ASAH-L4 and suggests
an enhancement of the scheduling algorithm. The chip uses
external synchronous SRAM for cell buffer and dynamically
assigns buffer storage for several ports and classes. The QOS

ICACT’99 paper

 5

buffering is an independent option for receive and transmit
direction. For 622Mbps traffic, the egress traffic will only be
QOS buffered and scheduled. This is due to its processing
speed limit primarily caused by clocking scheme with regard
to UTOPIA interface and partly from gate delay. It adopts a
weighted round robin scheme where each port or class is
assigned priority in bandwidth usage ratio but guaranteed in
minimum usage ratio as well. With a delay threshold
mechanism, it will also limit queuing delay of some delay
sensitive classes to certain absolute maximums.

The delay threshold mechanism using absolute values can
be easily incorporated into the existing implementation
developed for ASAH-L4, and this will ensure that some
classes will experience lesser delay regardless of the slot
assignment. The delay is controllable because of writing
time stamp in the linked list chain.

There is an important notion in using existing, un-refined
algorithm. Assigning more slot will imply more service rate
and this means lower delay in general. But if the actual traffic
inflow ratio is larger than the slot ratio, and if the traffic is

almost at its maximum, since the processing is at 50MHz, the
priority control effect might be weak. But this can be reduced
if we put more contrast in the slot assignment ratio than
actual traffic inflow ratio. Since the sequence register is
programmable and there are sub-queue thresholds and
selective discard modes, the loss and delay could be
adaptively controlled as required by the real situation.

6. REFERENCES

1. J. Chao and H. Pekcan, “Queue Management with Multiple Delay and
Loss Priorities for ATM Switches,“ IEEE Int’l Conf. On Comms., vol.2,
pp.1169-1173, May.1994.
2. M. Katevenis et. al, “Weighted Round-Robin Cell Multiplexing in a
General-Purpose ATM Switch Chip,” IEEE JSAC, vol.9,No.8, ,pp.1265-
1279, Oct 1991.
3. Kwok-Leung et. al, “Queue Management to Serve Variable and Constant
Bit Rate Traffic at Multiple Quality of Service Levels in a ATM Switch”,
United States Patent 5,757,771. May. 26, 1998/10/28

